
Coordinating Complex Problem-Solving Among Distributed Intelligent Agents

ABSTRACT

1
/:

This paper describes a process-oriented control

model for distributed problem-solving. The model

coordinates tile transfer and manipulation of in-

formation across independent networked applica-

tions, both intelligent and conventional. Tile model

was implemented using SOCIAL, a set of object-

oriented tools for distributed computing. Complex

sequences of distributed tasks are specified in terms

of high-level scripts. Scripts are executed by SO-

CIAL objects called Manager Agents, which realize

an intelligent coordination model that routes indi-

vidua| tasks to suitab|e server app]ications across

the network. These tools are illustrated in a pro-

totype distributed system for decision support of

ground operations for NASA's Space Shuttle fleet.

Keywords: distributed control, intelligent coordi-

nation, distributed artificial intelligence

INTRODUCTION

End-user tasks in distributed systems typically de-

compose into sequences of interactions between in-

dependent applications. For example, scheduling

engines are often driven by, task, resource, and con-

straint networks derived from independent planning

systems. Scheduling a space mission may therefore

depend on a succession of individual data transfers

and manipulations across several decision support

tools and databases. Similar task decompositions

arise in operations support for complex control net-

works such as tile Space Shuttle Launch Processing

System (Adler, 1990).

N92" 3.60,,
Richard M. Adler -- "

Symbiotics, Inc. ._.875 Main Street . / /

Cambridge, MA 02139

... /

z_

Interactions among distributed applications

and data stores must be initiated and managed. In

the absence of direct interprocess links, human in-

tervention is required to effect transfers of data and

control. Such involvement, whether by end-users or

supporting ne(work operators, impacts the produc-

tivity and cost of frequent, high-level activities such

as decision support. Moreover, the likelihood of hu-

man errors may compromise quality and safety.

Intelligent systems have tile capacity to coor-

dinate distributed problem-solving autonomously.

However, considerable latitude exists in design-

ing architectures for distributed intelligent control

(Bond and Gasser, 1988). For example, interac-

tion sequences carl be automated piecemeal, by es-

tablishing directed, data-driven control links be-

tween individual applications. Distributing sequen-

tial control logic ira this mamler is cumbersome in

application networks that address multiple corn-

plex tasks. Moreover, directed links are difficult to

maintain, extend, and verify when network applica-

tions and tasks are added or modified with any fre-

quency. Finally, highly distributed control schemes

incur processing overhead to ensure focus and co-

herence of autonomous problem-solving activilies.

This paper describes a process-oriented model

for distributed coordination. Tile model enables

complex sequences of distributed tasks to be spec-

ified in terms of high-level scripts. Each script el-

ement represents a distinct data transfer task or

request for problem-solving skills between comple-

mentary applications. The model also encompasses

intelligent control modules that execute these pro-

cess scripts automatically: individual tasks are

routed to suitable distributed servers and results

47

PrdECEDiNG PAGf PLANK NOT F_!._JlED

arc retri(,ved for the requesting applications. This

model alleviates many of the difficulties faced by

more dcc(,ntralized coordination schemes.

The new process control model was imple-

nlented as an extension to SOCIAL, a development

tool for distribut_'d computing across heterogeneous

hardware and software environments. The next sec-

tion of ttw paper reviews SOCIAL's architecture

and functionality. The following section describes

lhe d_,sign and implementation of the process con-

trol model. The model is then illustrated with

a prototyw_ distributed system for decision sup-

port of Space Shuttle fleet ground operations at the
-1 eNASA Kennedy Space Cent r.

OVERVIEW OF SOCIAL

SOCIA l, consists of a lay'ored collection of object-

oricnt_,d tools for distributed communication, data

managem('nt, and control (of. Figure 1). These

g(meric capabilities arc I_un(lle(I into active objects

calb,(t Agents. SOCIAl, I)r()vides an extensible li-

brary _)f I)redeIiNed Agent. classes with specialized

integration and coordinntiou behaviors. An ap-

i)lication is linked non-iutrl,sively to an Agent via

calls to a high-level Apl)licalion l)rogramming In-

terface (API). Apl)licatiolls ,imke API calls to in-

voke lheir m('(liating Agont objects to c'xecul,e de-

sired (listribut.('d I)(,haviors Agenls interact us-

ing asynchronous message-passing. SOCIAL's un-

d_,rlying lnyers transparently iimuage interprocess

message communication across hetc_rogeneous lan-

guag(,s, Ol)eratiug systelus, and networked hard-

ware iAatfornls (Symbiotics, 1990).

Application

Agents 1//

S(X;IAL [

Network, R

Processor, and]_

Software Platforq I

Application 1

Development Interface J

..... _- Av.t
Agent IJbrary r ,-.v _

(Managers, Gateways)L_'='--D

I °.,.M--,.--,I
Distributed Communications (MetaConrler)

l,'igure 1: Architecture of SOCIAl,

SOCIAL Gateway Agents

SOCIAL Gateway Agents provide a uniform design

model and methodology for integrating heteroge-

neous applications, both conventional and intelli-

gent (Adler, 1991b). The root Gateway Agent class

defines a full peer-to-peer control model that is in-

herited by all specialized Gateway subclasses. This

model invokes a set of Agent methods in a data-

driven manner to process: (a) outgoing messages

from the Gateway's associated application to other

Agents; (b) incoming messages from other Agents;

and (c) responses to prior outgoing messages.

An application is integrated by creating a new

Gateway subcla.ss, which involves specializing two

sets of Agent methods. One set establishes custom

mappings for application-specific data models and

control interfaces. To simplify interactions between

heterogeneous applications, SOCIAL transports in-

formation in a neutral exchange format. Accord-

ingly, each Gateway subclass must define conver-

sion methods for translating from the application's

native knowledge representation model and com-

mand interface into SOCIAI,'s neutral data format,

and vice versa. Native and neutral exchange data

structures are accessed and manipulated using func-

tions from the application's programmatic interface

and the API for SOCIAL's data management layer.

The second set of Gateway methods defines the

application's desired interactions with other ele-

ments of the distributed system. These control

methods are constructed using the Gateway con-

version methods for extracting data and knowledge,

injecting information, or invoking application com-

mands, as required. One method establishes server

behaviors, which process incoming messages from

other application Gateways and generate suitable

responses. A second method defines client behav-

iors. Applications configured as clients initiate out-

going messages containing service requests via their

Gateways. A Gateway client behavior typically in-

jects responses to previous request messages back

into the associated application for follow-on pro-

cessing. A given application Gateway can sup-

port multiple client and server interactions with any

number of other application Agents.

48

SOCIAL Manager Agents

SOCIAL Manager Agents provide predefined con-

trol models for coordinating activities in com-

plex networks of application Agents. Coordination

among distributed problem-solvers can be achieved

through different strategies, One approach is to dis-

tribute control, localizing it within individual appli-

cations. A second approach is to centralize control,

either in a preferred application or in a dedicated,

independent module. SOCIAL Gateway Agents

provide flexible vehicles for implementing either of

these opposing alternatives. Manager Agents were

developed to support a third design strategy, which

is to combine localized and centralized control into

hy6rld coordination architectures.

The first SOCIAL Manager Agent defined a hi-

erarchical, distributed control (HDC) model (Adler,

1991a). This ttDC-Manager mediates interactions

among autonomous "subordinate" Agents much

like a human manager. Application Gateways com-

municate exclusively with their Manager Agent, re-

questing information or problem-solving resources,

and receiving responses to those requests. Subor-

dinate Agents do not need to know about the flmc-

tionality, structure, or even the existence of other

application Agents; they only need to know (a)

the high-level API for interacting with the ItDC-

Manager and (b) the names of the services available

within the IIDC-Manager's scope.

The basic operational model for the HDC-

Manager is summarized in Figure 2. The IlDC-

Manager functions as an intelligent router of task

requests, based on a directory knowledge base. This

directory describes: (a) individual information re-

sources and problem-solving capabilities; (b) the

application Agent that supports each such service;

(c) the message format for requesting that service;

and (d) the server Agent's logical address. Request

messages from application Gateway Agents are

posted to the HDC-Manager's agenda queue. The

ttDC-Manager processes and dispatches requests

asynchronously to suitable server application Gate-

ways. These Agents, in turn, post responses from

their applications to the HDC-Manager's "bulletin-

hoard".database. The HDC-Manager subsequently

retrieves such responses and forwards them back to

the original requesting Agents.

÷

fDirectory Router "_]
I I Agenda Bufletln- / /

....................J J

dlspatch(_/t dispatch

llO;Z.:
GiitewayAllent I

Figure 2: tlDC-Manager Operational Model

In essence, the ttDC-Manager establishes a

layer of control abstraction that decouples appli-

cation Gateways from direct connections with one

another. The centralized directory promotes main-

tainability and extensibility over the evolutionary

lifecycle of complex distributed systems.

SOCIAL'S PROCESS-PLANNER AGENT

SOCIAL's HI)C-Manager Agent supports simple

interactions between independent distributed sys-

tems. For example, an intelligent scheduling

tool might query a remote shop floor production

database to determine the availability of equipment

or labor resources. Similarly, an intelligent opera-

tions support application for a power management

system might collect data to confirm a power bus

fault hypothesis, or command an experiment man-

agement system to minimize power consumption.

'/'he applications in these examples are loosely

coupled. The scheduler uses the database solely

as a source of current status information about its

target domain. Similarly, operation management

systems only interact in situations where the struc-

tural and functional interfaces between their target

subsystems appear to be relevant. Simple discrete

transactions (e.g., query-response, sensor polling,

command-acknowledgment interchanges), provide

49

sufficientcouplingto enabledistributedproblem-
solving activities in thesecontexts. The ttDC-
ManagerAgentcontainsall of the apparatusand
control functions requiredto coordinatediscrete
transactionswithin a distributedsystem.

However,manykinds of distributedproblem-
solvingactivities cannot be accomplishedwithin
the scopeof an individual logicaltransactionbe-
tweentwo remoteapplications.Consider,for ex-
ample,a distributeddecisionsupportsystemcom-
posedof twoor moreindependenttools,suchasa
planningsystemanda schedulingengine.Suppose
that the planningsystemincorporatesthe master
databasefor all decisionsupport information,in-
cludingall operationalplansandschedulesfor the
targetdomain. Assumealsothat the modelsused
to representdataand knowledgeareincompatible
acrossthetwo tools,whichis commonfor indepen-
dentsystemsspecializedto solvedifferentproblems.

In this context,anelaboratesetof information
andcontrolexchangeshasto takeplaceto perform
scheduling.Datamustbeextractedfrom theplan-
ning system'sdatabase,transferredto the sched-
uler, translatedinto a format that is compatible
with thescheduler,andthen loaded.At this point,
the primaryschedulingactivity itselfcanproceed.
Onceschedulinghasbeencompleted,a similarset
of support transactionsmust be accomplishedin
reverseorder. The completedschedulemust be
translatedinto a format acceptableto the plan-
ner,transferredbackto theplanner'shostplatform,
andincorporatedinto the master decision support
database.

Clearly, such sequences need to be automated,

both for end-users and for autonomous manage-

ment systems. It should be possible to invoke

scheduling or comparable functions through sim-

ple, high-level commands. Such commands should

specify only the few data items that are required

to characterize particular instances of the desired

task type (e.g., a mission identifier, options to over-

ride default control parameters for the scheduling

engine). This amounts to a requirement to auto-

mate composite activities, or processes, composed

of multiple discrete interactions between indepen-

dent distributed applications. The HDC-Manager

Agent currently lacks the requisite capabilities ei-

ther to define such distributed problem-solving pro-

cesses or to coordinate their execution. We consid-

ered several design approaches to extend SOCIAL

to provide the desired functionality.

One alternative would be to configure a dis-

tributed system so that one message would initiate

the desired activity sequence by triggering the first

application Gateway to perform its assigned task,

pass the results onto a second Gateway to perform

the second required task, and so forth. In other

words, a single message to the first server Agent

would automatically initiate the desired chain of in-

teractions. SOCIAL's communication layer main-

tains a "travel log" for each message as it is passed

through Agents. Once the "terminal" Agent com-

pletes its activities, results are automatically re-

turned and post-processed through all preceding

Agents that appear in the message's log.

Unfortunately, the logic for parsing and for-

warding messages within individual application

Gateway Agents can become quite involved for

complex processes. Moreover, a given application

Agent may have to perform a given function within

multiple process sequences, with different successor

Agents and post-processing activities for each dis-

tinct chain. Maintainability and extensibility are

compromised in that each time a new process is de-

fined, the control logic for Gateway Agents in that

process chain must be modified. Consequently, for

mission critical applications, the entire suite of be-

haviors for each affected Agent has to be verified

again. Finally, SOCIAL's communication model

only supports acyclic message forwarding, preclud-

ing processes involving "back-and-forth" exchanges

or iterative looping.

A second alternative would be to extend the

HDC-Manager directly to support the specification

and execution of distributed sequential processes.

On this strategy, special "macro" tasks would be

definable in the HDC-Manager's directory knowl-

edge base, corresponding to composite processes.

A message requesting execution of such a com-

posite task would activate extended control logic.

50

This logic would decompose macro tasks into con-

stituent service requests and post individual steps

to the task agenda, in suitable order, for the IlDC-

Manager to process and route.

This approach resolves the objections raised

against the previous design strategy. First, mes-

sages are only passed between the extended ItDC-

Manager and individual application Agents, elimi-

nating the hardwiring of interaction sequences di-

rectly into the control logic for individual Gate-

ways. Second, the new macro processes are modu-

lar, maintainable, and readily extensible. In partic-

ular, processes are modeled independent from and

external to individual application Agents. System

testing is simplified because new processes can now

be defined without affecting previously verified pro-

cesses and Agent behaviors. Finally, the extended

HDC-Manager mediates all interactions hetween

application Gateways as separate message trans-

actions. SOCIAL's acyclic message-passing model

can accommodate cyclic behaviors that are brokeu

up in this manner.

The main objections to extending the Ill)C-

Manager are performance and complexity. This

Agent's primary design role is to eliminate direct

connections between application Agents by medi-

ating interactions. The proposed fimctional exten-

sions decompose macro tasks and manage queueing

of process subtasks. These capabilities for man-

aging distributed processes impose computational

overheads that reduce the responsiveness of this

core routing capability. Moreover, these design ex-

tensions also complicate the original control logic

of the IlDC-Manager significantly.

We adopted a third approach, which distributes

the functionality of the extended |lDC-Manager to

overcome these design problems. Specifically, cen-

tralized process definition and management func-

tions are retained, but decoupled from the Ill)C-

Manager and assigned to a new subclass of Manager

Agents called Process-Planners. The distributed

control model realized in the Process-Planner is

then configured to drive the tl DC-Manager through

the individual process steps comprising composite

activity sequences. It does this by posting succes-

sive service requests to the II DC-Manager's agenda

for distributed routing. This basic architectural

configuration is depicted in Figure 3.

4,

]

re_)quest next I

process step] _)._at ch

_urn P rocess

step reAults

1

tasks Oask results

4task results +
0
execute a / Gateway Agent 2]
messageto [Pr°cesi'Plannerl t (Application-2)J
process pla_n

l"igure 3: SOCIAl, l'rocess Control Archiiecture

This distributed design is at, tract, iw. because it

enables the lll)(_',-Managf'r to function identically

for two distinct dist.ribuled computing nlodels -

transaction- based and process- based. The Process-

Planner manages process decomposition and ac-

tivity sequencing. It transmits individual process

steps as individual service requests to the Ill)C.-

Manager, replicating the type of inputs that would

be expected from ordinary application Gateway

Agents. Consequently, the llDC-Manager need not

distinguish bet w_,en discrele and composite service

requests within its agenda. In fact, proc_,ss steps

and service requests representing discrete Gate-

way transactions can be ini, erleaw_d on the Ill)C-

Manager's agenda, enabling both kiuds of inter-

actions to be coordinat.ed concurrently. 111 ad(li-

tion, partitioning distril)uied control logic across

two Manager Agents fosters tnodularity, nmintain-

abilily, and extensibility.

The message traffic l/etw,'on th,' I'ro<-_,ss I'lan

her and Ill)C-Manager elltails Sf)Ili(' t)l,rforlllallC_ ,

overtiead, tlowew'r, the lwo Agellls C(lllilililiiiC;It_'

asynchronously and can oper;llJ' COll(-ilrl'_,llliy (ill

dedicated proc¢,ssors, COlilp_,li._;;iling ;il]l,;isl. ill]_;irl.

for lliessage-passilig ow'rliead. Ow, rall ll_TPi)rili;lliCl '

depends slrollgiy on the l);irticular distril)ull,,I sys-

l.enl and its ratio of cOlnllniiiical.i<lii aii¢l co(_rdillll-

Lion to local ;l])plicalion I>ri')lll_'tli-S(ilVillg I,,a<ls.

B1

Implementing the Process-Planner Agent

The Process-Planner Agent was implemented as a

subclass of SOCIAL Gateways. Consequently, it

inherits the standard Gateway peer-to-peer con-
trol model and API methods. These methods were

specialized to interface with the core process plan-

ning application. The data injection API method

parses two SOCIAL neutral exchange types. Char-

acter strings are interpreted as pathnames for files

containing process scripts, which the planning sys-

tem loads into memory. Lists are treated as com-

mands arid command arguments, which are exe-

cuted through the application's control interface

(e.g., initialize, reset). Extensions to handle other

data types amount to straightforward program

Case statement clauses. The API method for ex-

tracting information was not required, because the

process planning system functions solely in a client

role.

The process planning application examines a

process script to deterntine the next step to per-

form. Currently, a script, consists of an ordered

list of entries that correspond to services identi-

fied in the directory knowledge base of the asso-

ciated tII)C-Manager Agent. The :compute-next-

step command retrieves the first script item that
has not, been instant.iated. An item has been in-

stantiated if it has been annotated with execution

results returned from the Ill)C-Manager.

The planning program also computes prede-

cessors and successors to current steps in process

scripts. The IIDC-Manager supports a generic file

transfer service based on SOCIAL utility agents

that send and receive files across network nodes.

This service is context-sensitive in that it presup-

poses source and target file pathnames and host,

names. The Ill)C-Manager can determine these

items given the previous and succeeding script steps

to the current file transfer {.ask.

The Process-Planner Agent starts up the em-

bedded planning program in response to a mes-

sage that specifies initialize and reset commands,

toge.ther with the name of a script file to load. A

second message initiates the following control cycle:

1. the Agent determines the next process step

from the process planner program and dis-

patches a suitable service request message to

the HDC-Manager;

2. the HDC-Manager dequeues the request from

its agenda, finds the server application Agent

(e.g., a Gateway for a scheduling engine, a

Send-File utility), and dispatches an appropri-

ate task message to that Agent;

3. the target application Agent performs the as-

signed task and posts its response to the HDC-

Manager's bulletin-board. Typically, the tar-

get Agent is a Gateway, which interacts with

its embedded application by injecting data or

commands and collecting query or problem-

solving results;

4. the HDC-Manager automatically routes the

posted task results back to the Process-Planner

Agent;

5. the planning program updates the instanti-

ated script with service request results and

computes the next step from the script. The

Process-Planner dispatches this new process

step back to the HDC-Manager for routing.

The Process-Planner then reiterates this exe-

cution cycle. The Agent terminates looping when

notified by its embedded process planning program

that the script has been completely instantiated.

Tim Process-Planner plays the role of a Man-

ager Agent in that it performs distributed control

functions rather than integrating domain-specific

applications, ltowever, it was designed and im-

plemented as a subclass of Gateway Agents. So-

phisticated process planning tools are beginning to

appear commercially in CAE, CAM, and CASE do-

mains. These tools are used to specify task decom-

positions and automate control of work flows for

machining complex parts, other manufacturing pro-

cesses or managing large projects. The Gateway's

uniform, high-level interface architecture preserves

design flexibility to replace the SOCIAL process

planning program with a more powerful dedicated

engine.

52

Distributed Decision Support Prototype

A prototype was developed to validate this de-

sign model for coordinating processes in SOCIAL.

This prototype simulates a distributed decision sup-

port system for ground operations activities for the

Space Shuttle fleet at the NASA Kennedy Space

Center. Specifically, a Process-Planner Agent was

implemented and coupled to an HDC-Manager.

These two Agents automatically coordinate the

complex sequence of distributed activities required

to schedule Shuttle missions.

Two (simulated) decision support applications

were integrated using SOCIAL Gateway Agents

(cf. Figure 4). One Agent represents a commer-

cial planning system called Artemis, which NASA

has modified with a frontend interface customized

for planning ground support activities for Shut-

tle missions. The second Agent represents an in-

telligent, constraint-based scheduling engine called

Gerry (Zweben, 1990), which is being developed by
the NASA Ames Research Center. Artemis is based

on a proprietary fourth generation language and re-

sides on an IBM mainframe host. Gerry, written in

Common Lisp and CLOS, runs on Unix worksta-

tions.

The Artemis Gateway Agent is configured to

simulate three tasks: (a) downloading data files

for a particular mission from the Artemis master

planning database; (b) uploading data files rep-

resenting a completed mission processing schedule

back into Artemis; and (c) running an analysis pro-

gram to detect and report resource conflicts be-

tween the new schedule and existing schedules for

other Shuttle missions. The Gerry Gateway also

simulates three tasks: (a) translating and loading

mission plan files into the scheduler; (b) computing

the mission schedule; and (c) extracting and trans-

lating the completed schedule back into Artemis-

compatible file format.

The Gerry scheduler requires four types of plan

information: a network of tasks to be performed

to prepare the Shuttle vehicle and its associated

payload(s) for launch; a specification of available

resources (e.g., labor schedules, equipment such as

cranes, and other materials); a set of constraints on

tasks and resources; and a data dictionary that de-

scribes the information fields in the preceding three

datasets. Artemis generates these datasets as four

ASCII files in a standardized record format. Gerry

requires data to be input from ASCII files in a cus-

tom object-oriented format.

GerryGateway ARTEMIS Gateway

Figure 4: Prototype Decision Support Gateways

SOCIAL's data management subsystem was

used to define custom neutral exchange data struc-

tures. Translators were written to map between

Artemis and SOCIAL data models and between

Gerry and SOCIAL data models (el. Figure 5).

The translators were hooked into the application

Gateway Agent interface API methods to perform

appropriate conversions of data file formats. Data

files are translated into neutral exchange format

structures in memory, and then written to new files

in the target converted format.

Artemis Data Model SOCIAL Neutral
(DBMS/4GL-based) Exchange Model

fleld-deKrlptors

task networks
constraints
reol/rce

Gerry Data Model

(LISP/CLOS-based)

Mission
Project Attributes
Fields _ Tasks
Task datasets Relations
Constraint datasets Resource-po_s
Resource datasets Milestones

Figure 5: Disparate Decision Support Data Models

A subclass of HDC-Manager Agent, called the

DSS-MGR, was created to coordinate interactions

53

between the two decision support applications (cf.

Figure 6). Three steps were required to specialize

the DSS-MGR Agent for this purpose. First, con-

ditions were defined for prioritizing agenda service

requests. The DSS-MGR sorts requests with re-

spect to an ordinal list of service types. Requests of

the same type are ordered by increasing values of a

numeric priority attribute. Second, the DSS-MGR

directory knowledge base was constructed. The di-

rectory identifies all services available from all ap-

plication Gateways subordinate to the DSS-MGR,

plus the generic file transfer capability. Both DSS-

MGR attributes are defined using the high-level

declarative API specific to HDC-Manager Agents.

Third, dispatching functions were written for each

directory service entry. These functions manipulate

data arguments contained in service request mes-

sages into a task message that the HDC-Manager

routes to the relevant application Gateway server.

DSS-Mgr Agent

(transfer-data-files)

(load-Artemis-data)

(Artemis-analyze-and-report)

File format conversions currently take place

within the load-Gerry-data and retrieve-Gerry-data

tasks. Once the various Agents are loaded and ini-

tialized, the mission scheduling sequence is initiated

through a simple message to the Process-Planner

Agent to compute the next step for a particular mis-

sion, such as STS-40. The Process-Planner Agent

then executes the control loop described in the pre-

vious section against the mission scheduling script.

All demonstration Agents and simulated appli-

cations were written in Common Lisp. The demon-

stration system can be run on a single platform or

combination of platforms that currently run SO-

CIAL/Lisp, including Apple Macintosh IIs, Lisp

Machines, and Unix workstations. The Agent Li-

brary is currently being converted to C, to run on

SOCIAL/C workstation hosts. A planned port of

SOCIAL/C to the IBM/VM environment will es-

tablish direct interprocess interfaces across main-

frames and workstations. NASA's distributed de-

cision support system can then be implemented on

the intended target platforms.

+ ti tJ ti ti ÷

(on each node)

Figure 6: Decision Support HDC-Manager Agent

Next, a script was written for the Process-

Planner Agent, defining the distributed process for

scheduling Shuttle missions. This sequence consists

of the following steps:

(retrieve-Artemis-data)

(transfer-data-files)

(load-Gerry-data)

(schedule-mission)

(retrieve-Gerry-data)

FUTURE DIRECTIONS

The Process-Planner Agent is being redesigned

with extended functionality. The original planning

program only supports simple sequential scripts.

These scripts cannot specify data-driven processes,

in which successive steps are determined dynam-

ically at runtime, contingent on the results of

preceding process steps. Moreover, the initial

Process-Planner drives the HDC-Manager to ex-

ecute script steps individually, in a strictly syn-

chronous, "execute and wait" sequence. Ideally,

the Process-Planner should be able to request the

tlDC-Manager to route all script activities that are

mutually independent within a single control cycle.

To overcome these limitations, a more expressive

scripting language will be developed for specifying

processes that incorporate conditional branching,

iteration, and concurrent tasking. The Process-

54

Planner's control logic will be extended accordingly.

A capability for executing multiple scripts simulta-

neously will also be added.

A second set of enhancements will provide more

formal development tools for creating and manag-

ing script libraries, replacing the ad hoc techniques

used in the prototype Process-Planner. A menu-

based editor will be developed to access and manip-

ulate process scripts. Also, scripts will be stored in

a central database of process plans rather than in

an arbitrary collection of independent files.

Other development efforts will extend SO-

CIAL's library of Manager Agents. The current

HDC-Manager is adequate for distributed systems

in which a single application Agent represents the

unique source for a given resource or service. How-

ever, additional control requirements arise for ap-

plication networks in which multiple application

Agents can provide data, knowledge, or problem-

solving skills redundantly. For example, identical

copies of a program may be available on several

nodes. In addition, some applications may have

overlapping functionality for planning, scheduling,

or other tasks. A dedicated "Server-Group" Agent,

inspired by the ISIS model for group-based tasking

(Birman, 1990), is being designed to address dis-

tributed control issues for functionally redundant

application networks. Like the Process-Planner,

this Agent will be configured to offioad new con-

trol capabilities and work cooperatively with the

HDC-Manager. Specifically, the Server-Group will

monitor availability of server Agents, determine the

best server for a task, and enable redundancy-based

approaches to fault tolerance.

RELATED WORK

Alternative frameworks for developing heteroge-

neous, distributed intelligent systems include ABE

(Hayes-Roth, 1988), MACE (Gasser, 1987), Agora

(Bisiani, 1987), and Cronus (Schantz, 1986).

MACE incorporates dedicated manager agents for

centralized routing of messages among applica-

tion agents. However, MACE managers lack the

other capabilities of SOCIAL HDC-Managers, such

as shared memory, transparent returning of mes-

sage responses, and extensibility for multi-level

control hierarchies. Like SOCIAL, ABE, Agora,

and Cronus all provide virtual environments to

shield users from platform dependencies and net-

working mechanics. However, they do not im-

plement generic distributed services in uniform,

object-oriented layers that are accessible to devel-

opers for customizing. Agora relies on communi-

cation through shared-memory, reflecting its ori-

entation towards parallel multi-processing architec-

tures. The other tools use message-passing models

comparable to SOCIAL. ABE and Agora provide

predetined control frameworks such as data flow

and blackboard models. Unlike SOCIAL Manager

Agents, these models explicitly couple individual

applications directly to one another. Moreover, het-

erogeneous SOCIAL Manager Agents can be con-

figured to work together cooperatively. It is unclear

whether the other tools support such combinations

within a given distributed systems.

The literature on distributed artificial intelli-

gence (DAI) contains many interesting architec-

tures for cooperative problem-solving, including

blackboard systems, contract nets, and collections

of autonomous agents (Bond and Gasser, 1988). In

this context, cooperation refers to loosely-coupled

networks of intelligent Agents working to solve a

single complex problem through collective action.

Most such DAI architectures rely on purely local-

ized control models duplicated across homogeneous,

autonomous agents. These designs can be repli-

cated within the generic communication and con-

trol model provided by SOCIAL Gateway Agents.

More recent DAI research focuses on theories

of cooperation for open-ended systems composed of

arbitrarily heterogeneous applications (Gasser and

Iluhns, 1989). The critical problem here is to de-

sign dynamic interaction protocols for communi-

cating serf-descriptive goals, plans, and intentions

among agents with radically different knowledge

and perspectives. SOCIAl, Managers currently ad-

dress more modest closed-world domains, in which

the rosources available in an agent network are spec-

ified a priori and statically. A synthesis of Man-

ager control models with dynamic interaction pro-

55

tocols could contribute to a powerful theory of co-

operation for open networks of autonomous agents:

agents and their resources could be registered dy-

namically in the context of a partially centralized

control architecture that mediates agent interac-
tions.

CONCLUSIONS

SOCIAl, applies a highly modular, non-intrusive

object-oriented approach to simplify the design

and implementation of complex distributed sys-

tems (cf. Figure 7). High-level Agent APIs parti-

tion generic distributed computing and application-

specific functionality. Gateway Agents provide a

uniform methodology and design architecture for

integrating heterogeneous applications, both intel-

ligent and conventional. Manager Agents provide

high-level distributed control building blocks for ty-

ing application Gateways together. Coordinating

via Managers eliminates direct connections between

individual application Agents that are difficult to
maintain and extend.

Manager Agent

Shared memory
Directory of services
Task allocation
Routing / Dispatching
External Interfaces

Server.group Agent

Health monitoring
Fault tolerance
Task allocation

(redundant servers)

I Gateway Agent I [Process Planner Agent I

I Application integration I I Activity sequencing [

l"igure 7: SOCIAl, l,ibrary Building Blocks

'File prototype distributed decision support sys-

tem described earlier illustral.es cal)abilities for:

• integrating independent planning and schedul-

ing engines across a coniputer network;

• automating distributed interprocess commu-

nication, namely "fine-grained" exchanges of

data and control between remote executing ap-

plications;

automating conventional "coarse-grained" in-
teractions such as file transfers across dis-

tributed application platforms;

automating the coordination of complex se-

quences of fine- and coarse-grained interactions

between distributed applications through high-

level, declarative scripts.

The coordination capabilities provided by SO-

CIAL Manager Agents have broad applicability for

distributed intelligent systems in space-related do-

mains. For example, process scripts could be used

to coordinate routine shop floor activities. Task

control and work-in-progress status data could be

routed automatically among Shuttle and payload

processing facilities scattered across the Kennedy

Space Center complex. Similarly, shop floor statis-

tics could be collected, summarized, and transmit-

ted to higher-level decision support systems. Mis-

sion schedules could be monitored and managed

more effectively. This feedback could also be used

to tune the processing estimates that drive long-

term planning of Shuttle missions.

In addition, process scripts could be used to au-

tomate standardized launch processing and mission

control disciplines, enhancing productivity, safety,

and quality assurance. Beyond decision and oper-

ations support applications, process scripts can be

used to automate routine flows of information in

office automation and concurrent engineering con-

texts. Finally, process scripts can be applied in

space science domains for automating sequences of

data retrieval, analysis, and graphic visualization

activities. End-users could develop, maintain, and

extend their own application-specific scripts.

Acknowledgments

Development of SOCIAL has been sponsored by

the NASA Kennedy Space Center under contracts

NAS10-11606 and NAS10-11763. Artemis is a

trademark of Metier Management Systems. Monte

Zweben and Bob Gargan provided Gerry software.

Brad Young provided technical assistance relating

to Artemis.

REFERENCES

Adler, R.M. (1991a). A Hierarchical Distributed

Control Model for Coordinating Intelligent Sys-

tems. Proceedings of the 1991 Goddard Confer-

ence on Space Applicationz of Artificial Intelli-

gence. NASA CP-3103. pp. 183-198.

Adler, R.M. (1991b). Integrating CLIPS Applica-

tions into Heterogeneous Distributed Systems. Pro-

ceedings of the Second CLIPS Users Conference.

NASA Johnson Space Center. Houston, Texas,

September 23-25, 1991.

Adler, R.M. and Cottman, B.H. (1990). EXODUS:

Integrating Intelligent Systems for Launch Opera-

tions Support. Fourth Annual Workshop on Space

Operations, Applications, and Research (SOAR-

90). NASA CP-3103, Volume 1. pp. 324-330.

Birman, K., Joseph, T., Kane, K., and Schmuck,

F. (1989). The ISIS S_,lstem Manual VI._. De-

partment of Computer Science, Cornell University,

Ithaca, New York.

Bisiani, R., Alleva, F., Forin, A., Lerner, R., and

Bauer, M. (1987). The Architecture of the Agora

Environment. In M. Huhns (Ed.). Distributed Arti-

ficial Intelligence. Morgan-Kaufmann, San Mateo,

California.

Bond, A.tI., and Gasser, L. (1988). (Eds.) Read-

ings in Distributed Artificial Intelligence. Morgan-

Kauflnann, San Mateo, California.

Durfee, E.H., Lesser, V.R., and Corkill, D.D.

(1989). Trends in Cooperative Distributed Prob-

lem Solving. IEEE Transactions on Knowledge and

Data Engineering. 1(1), 63-83.

Gasser, L. and Huhns, M.N. (1989). (Eds.). Dis-

tributed Artificial Intelligence, Vol. II. Morgan-

Kaufmann, San Marco, California.

Gasser, L., Braganza, C., and Herman, N. (1987).

MACE: A Flexible Testbed for Distributed AI Re-

search. In M. Huhns (Ed.). Distributed Artificial

Intelligence. Morgan-Kaufinann, San Mateo, Cali-

fornia.

[tayes-Roth, F., Erman, L.D., Fouse, S., Lark, J.S.,

and Davidson, J. (1988). ABE: A Cooperative Op-

erating System and Development Environment. In

A.H. Bond and L. Gasser (Eds.). Readings in Dis-

tributed Artificial Intelligence. Morgan-Kaufmann,

San Mateo, California.

Schantz, R., Thomas, R. and Bono, G. (1986). The

Architecture of the Cronus Distributed Operating

System. Proceedings of the 6th International Con-

ference on Distributed Computing Systems.

Symbiotics, Inc. (1990, March). Object-Oriented

Heterogeneous Distributed Computing with Meta-

Courier. Technical Report, Cambridge, Mas-

sachusetts.

Zweben, M. and Gargan, R. (1990). The Ames-

Lockheed Orbiter Processing Scheduling System.

Fourth Annual Workshop on Space Operations, Ap-

plications, and Research (SOAR-90). NASA CP-

3103, voi. 1. pp. 290-295.

57

